125

Role of Hydropriming and Magneto-Priming in Developing Stress Tolerance

K Deprivation. Front Plant Sci., 11, 565647. doi: 10.3389/fpls.2020.565647. PMID:

33013986; PMCID: PMC7509405.

Knypl, J. S., & Janas, K. M., (1979). Increasing low-temperature resistance of soybean,

Glycine max (L) Merr., by exposure of seeds to water-saturated atmosphere. Biol. Plant

Acad. Sc. Bohemoslov., 21, 291–297.

Korkmaz, A., Korkmaz, Y., & Demirkiran, A., (2010). Enhancing chilling stress tolerance of

pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ. Exp. Bot.,

67, 495–501.

Krylov, A., & Tarakanova, G. A., (1960). Magnetotropism of plants and its nature. Plant

Physiology, 7, 156–160.

Kumar, A., Gangwar, J. S., Prasad, S., & Harris, D., (2002). On-farm seed priming increases

yield of direct-sown finger millet in India. Int. Sorghum Millets News, 43, 90–92.

Kumar, M., Pant, B., Mondal, S., & Bose, B., (2016). Hydro and halo priming: Influenced

germination responses in wheat var-HUW-468 under heavy metal stress. Acta Physiol.

Plant., 38, 217. https://doi.org/10.1007/s11738-016-2226-3.

Laube, J., Sparks, T. H., Estrella, N., Heofler, J., Ankerst, D. P., & Menzel, A., (2014). Chilling

outweighs photoperiod in preventing precocious spring development. Glob. Change Biol.,

20, 170–182.

Lazaridou, M., & Noitsakis, B., (2003). The effect of water deficit on yield and water

use efficiency of lucerne. In: Optimal Forage Systems for Animal Production and the

Environment; Proceedings of the 12th Symposium of the European Grassland Federation

(pp. 344–347). Pleven, Bulgaria. Bulgarian Association for Grassland and Forage

Production (BAGFP).

Lee -Suskoon, K., Hyeum, J., Beom, H., Minkyeong, K., & Euiho, P., (1998). Optimum water

potential, temperature and duration for priming of rice seeds. J. Crop Sci., 43, 1–5.

Lee, S., Moon, J. S., Domier, L. L., & Korban, S. S., (2002). Molecular characterization

of phytochelatin synthase expression in transgenic Arabidopsis. Plant Physiology and

Biochemistry, 40, 727–733. https://doi.org/10.1016/S0981-9428(02)01430-4.

Li, F., Wu, X., Tsang, E., & Cutler, A. J., (2005). Transcriptional profiling of imbibed Brassica

napus seed. Genomics, 86, 718–730. https://doi.org/10.1016/j.ygeno.2005.07.006.

Lobell, D. B., Schlenker, W., & Costa-Roberts, J., (2011). Climate trends and global crop

production since 1980. Science, 333, 616–620. https://doi.org/10.1126/science.1204531.

Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., &

Garnczarska, M., (2016). Seed priming: New comprehensive approaches for an old

empirical technique. In: Araujo, S., & Balestrazzi, A., (eds.), New Challenges in Seed

Biology - Basic and Translational Research Driving Seed Technology. InTech. https://doi.

org/10.5772/64420.

Manickavelu, A., Nadarajan, N., Ganesh, S., Gnanamalar, R., & Babu, R., (2006). Drought

tolerance in rice: Morphological and molecular genetic consideration. Plant Growth Regul.,

50, 121–138.

Matias, J. R., Torres, S. B., Leal, C. C. P., Leite, M. De. S., & Carvalho, S. M. C., (2018).

Hydropriming as inducer of salinity tolerance in sunflower seeds. Revista Brasileira de

Engenharia Agrícola e Ambiental, 22(4), 255–260. https://doi.org/10.1590/1807-1929/

AGRIAMBI.V22N4P255-260.

Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V., (2017). Defense priming: An adaptive

part of induced resistance. Annu. Rev. Plant Biol., 68, 485–512. https://doi.org/10.1146/

annurev-arplant-042916-041132.